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2.1 Improper multiple integral1

Improper integral is applied when we want to integrate the function over some unbounded domain or
integrate some unbounded function. The idea behind it is to use something finite to approach something infinite,
and likewise use bounded subsets to approach unbounded subsets.

Let’s begin with the definition for improper multiple integral, but firstly we need to define some notions
from topology to make the definition coherent and rigorous.

Definition 2.1

♣

Let E be a subset of Rm, E is bounded if there is a number R such that for all x = (x1, · · · , xm) ∈ E

we have
∑m

i=1 x
2
i ≤ R.

Definition 2.2

♣The closure of E ⊂ Rm is the subset {x ∈ Rm|∃xn ∈ E, limn→∞ xn = x}, denoted by Ē.

Definition 2.3

♣

The boundary ∂E of E is the intersection of closure of E and the closure of the complement of E. That
is, ∂E = Ē ∩ Ēc.

Example 2.1 The closure of an open interval (a, b) is the closed interval [a, b]. The boundary of (a, b) is the set
of the two endpoints {a, b}

In the following we write dx1 dx2 · · · dxm as dx for short.

Definition 2.4

♣

A subset E ⊂ Rm is measurable if E is bounded, the characteristic function χE is integrable, and χ∂E

is integrable and has integral
∫
χ∂E dx = 0.

Definition 2.5

♣

An exhaustion of a set E ⊂ Rm is a sequence of measurable subsets En such that En ⊂ En+1 ⊂ E for
any n ∈ N and

⋃∞
n=1En = E.

Example 2.2 En := [−n, n]2 is a exhaustion of R2.

Definition 2.6

♣

Let {En} be an exhaustion of the set E and suppose the function f : E → R is integrable on the sets
En ∈ {En}. If the limit ∫

E
f(x)dx := lim

n→∞

∫
En

f(x)dx

exists and has a value independent of the choice of the sets in the exhaustion of E, this limit is called the
improper integral of f over E.

1For the reference of this section, I copied the chapter 11.6 of the book: Zorich, Vladimir Antonovich, and Octavio Paniagua. Mathematical
analysis II. Vol. 220. Berlin: Springer, 2016.



2.2 Characteristic function

We do need to check the independence for all exhaustions. Consider f(x) = sinx. Then
∫ 2nπ
0 f(x) dx = 0

but
∫ (2n+1)π
0 f(x) dx = 2. So we may have two integral for sinx if we consider only one exhaustion, which

does not make sense.
For non-negative functions we don’t need to check for all exhaustions.

Proposition 2.1

♠

If a function f : E → R is nonnegative and the limit in Definition 2.6 exists for even one exhaustion
{En} of the set E, then the improper integral of f over E converges.

Example 2.3 Let us find the improper integral
∫∫

R2 e
−(x2+y2)dx dy.

We shall exhaust the plane R2 by the sequence of disks En =
{
(x, y) ∈ R2 | x2 + y2 < n2

}
. After

passing to polar coordinates we find easily that∫∫
En

e−(x
2+y2)dx dy =

∫ 2π

0
dφ

∫ n

0
e−r2 dr = π

(
1− e−n2

)
→ π, as n → ∞.

By Proposition 2.1 we can now conclude that this integral converges and equals π. One can derive
a useful corollary from this result if we now consider the exhaustion of the plane by the squares E′

n ={
(x, y) ∈ R2||x| ≤ n ∧ |y |≤ n

}
.∫∫

E′
n

e−(x
2+y2)dx dy =

∫ n

−n
dy

∫ n

−n
e−(x

2+y2)dx =

(∫ n

−n
e−t2 dt

)2

By Proposition 2.1 this last quantity must tend to π as n → ∞. Thus, following Euler and Poisson, we find that∫ +∞

−∞
e−x2

dx =
√
π

This is the so-called Gaussian integral, often used in statistics and physics.

2.2 Characteristic function

Let’s look at another problem from the assignment:
Problem 2.1 Let S be a non-empty set in Rn. Define its characteristic function χS to be χS(x) = 1 for x ∈ S

and χS(x) = 0 otherwise. Prove the following identities: (a) χA∩B = χAχB . (b) χA∪B = χA + χB − χA∩B .
We can prove for more general cases. Let X,Y be any set. Denote the set of all maps from X to Y by

Y X . Here we consider Y = {0, 1}. Then the elements in {0, 1}X are called the characteristic functions on X .
Any such function is defined in the same way as χS for some S ⊂ X .

To prove two functions are equal, it is to prove their values at each point are equal.
We first consider the equation χA∩B = χAχB . By definition χA∩B(x) = 1 if and only if x ∈ A∩B. And

χA(x)χB(x) = 1 if and only if χA(x) = χB(x) = 1, if and only if x ∈ A and x ∈ B, which is equivalent to
x ∈ A ∩B. Therefore we have χA∩B = χAχB .

For (b) χA∪B = χA + χB − χA∩B we can argue in a similar way by checking when the both sides equal
to 1. There is another method to prove it and I would like to show that for general cases. Firstly we assume the
following formula for the indeterminants a1, · · · , an.

Lemma 2.1

♡

(1− a1)(1− a2)× · · · × (1− an) =
n∑

k=1

∏
1≤i1<···<ik≤n

(−1)kai1ai2 · · · aik
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2.3 Volume of tetrahedron

Proposition 2.2

♠

Let S1, S2, · · · , Sn be subsets of X , then we have

χS1∪···∪Sn =
n∑

k=1

∏
1≤i1<···<ik≤n

(−1)k−1χSi1
∩Si2

∩···∩Sik

Proof By substituting Si into ai in lemma 2.1, we have

(χX − χS1)(χX − χS2)× · · · × (χX − χSn) =

n∑
k=1

∏
1≤i1<···<ik≤n

(−1)kχSi1
χSi2

· · ·χSik

By induction on (a) we know that χSi1
χSi2

· · ·χSik
= χSi1

∩Si2
∩···∩Sik

.
Since χS + χSc = χX , for the left part we have

(χX − χS1)(χX − χS2)× · · · × (χX − χSn) = χSc
1
χSc

2
· · ·χSc

n

= χSc
1∩···∩Sc

n

= χ(S1∪···∪Sn)
c

= χX − χS1∪···∪Sn

Substract χX from both sides we proved the proposition.
Remark This is a kind of the so-called inclusion exlusion principle.
Remark For more generalizations, investigate the term ”Boolean ring”, ”fuzzy set”.

2.3 Volume of tetrahedron2

Now we switch to another problem. We know that the area of a triangle is 1
2a× h where a is the length of

the base of the triangle and h is the height to the base. While for a tetrahedron we know its volume is 1
3S × h

where S is the area of the base of the tetrahedron and h is the height to the base.
One might imagine how those people living in a world of dimension 4 calculate the ”volume” of a

”tetrahedron” of dimension 4 and one may guess the formula 1
4S × h still holds. And generally, aliens in Rn

should have the formula 1
nS × h.

To check this, one could first assume that the formula hold for all ”tetrahedrons” if and only if it hold for a
standard ”tetrahedron”. We define the standard ”tetrahedron” in Rm to be the subset ∆m := {(x1, · · · , xm) ∈
Rm|0 ≤ xi ≤ 1,∀1 ≤ i ≤ m,x1 + · · ·+ xm ≤ 1}, we call ∆m the standard simplex.

The area of ∆2 is ∫ 1

0

∫ 1−x2

0
1 dx1 dx2 =

1

2

The volume of ∆3 is ∫ 1

0

∫ 1−x3

0

∫ 1−x2−x3

0
1 dx1 dx2 =

1

2
× 1

3

Analogously you will find the volume of ∆m is∫ 1

0

∫ 1−xm

0
· · ·
∫ 1−x3−···−xm

0

∫ 1−x2−x3−···−xm

0
1 dx1 dx2 · · · dxm =

1

2
× 1

3
× · · · × 1

m
=

1

m!

So we do find that the formula 1
mS × h hold for the volume of ”tetrahedron” in dimension m.

Leave it behind, now consider the following experiment: Let’s pick elements from [0, 1] randomly, until

2The reference for this section is https://zhuanlan.zhihu.com/p/369714158
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2.3 Volume of tetrahedron

their sum gets larger than 1. Then we record the number of elements we have chosen. For example, if we
got two random numbers 0.12, 0.57 at first and we got 0.41 for the third pick, then we record n1 = 3 as now
0.12 + 0.57 + 0.41 > 1. Now we do this step repeatedly and we get a sequence of number n1, n2, · · · , nk, · · · .
We call A = limk→∞

1
k

∑k
i=1 ni the average of number of tries that we need to pick the numbers until their

sum is larger than 1. Now we try to calculate it.
Let Pr[Y = i] be the probability that we need to pick exactly i numbers from [0, 1] so that their sum

exceeds 1. A probability theorem will tell you that

A =
∞∑
i=1

i · Pr[Y = i]

We can rewrite it in the following way
∞∑
i=1

i · Pr[Y = i] = 1 · Pr[Y = 1] + 2 · Pr[Y = 2] + 3 · Pr[Y = 3] + . . .

=

∞∑
i=1

Pr[Y = i] + (1 · Pr[Y = 2] + 2 · Pr[Y = 3] + . . .)

=

∞∑
i=1

Pr[Y = i] +

∞∑
i=2

Pr[Y = i] + (1 · Pr[Y = 3] + 2 · Pr[Y = 4] + . . .)

=

∞∑
k=1

∞∑
i=k

Pr[Y = i]

=

∞∑
k=1

Pr[Y ≥ i]

If we choose i times from [0, 1], then we have the possible numbers a1, a2, · · · , ai. Then Pr[Y ≥ i] is the
probability that a1 + a2 + · · ·+ ai−1 ≤ 1, so it is exactly the quotient of the volume of ∆i−1 by the volume of
[0, 1]i−1, which is 1

(i−1)! . Therefore, the avarage of number of tries A =
∑∞

i=1
1

(i−1)! = e.
Remark The above procedure is a way to approximate e using Monte Carlo Simulation.

� Exercise 2.1 Try to find the average of number of tries that we need to pick numbers from [0, 1] randomly until
their sum exceeds x ∈ [0, 1].

7


